Ag + AgCl in the experimental control of solution equilibria 273

TABLE 1 (continued)

Buffer	Pressure bars	Temp °K	f_{H_2} bars	$\begin{array}{c} \text{Log } {f_{C1}}_2 \\ \text{bars} \end{array}$	$\begin{array}{c} \operatorname{Log} \mathrm{f}_{\mathrm{0_2}} \\ \mathrm{bars} \end{array}$	$f_{\rm HC1}$ bars	f_{H_20} bars	Log m _{HC1} 。
FMQ, OH(AgAgClX, HOC	(1) 500	600	1.5136	-16,197	-33,183	3.330	110.0	-0.428
		700	3.8019	-13.172	-26.429	11.830	233.6	0.123
		800	5.8884	-11.082	-21.548	21.827	327.3	0.384
		900	6.9183	-9.561	-17.844	28.347	376.5	0.498
	1000	600	1.8197	-16.062	-32.973	4.266	140.2	-0.617
		700	4.4668	-13.056	-26.184	14.656	309.7	-0.131
		800	8.3176	-10.952	-21.192	30.130	493.3	0.163
		900	11.2200	-9.442	-17.380	41.400	642.7	0.282
	2000	600	2.4547	-15.792	-32.592	6.76	217.4	-0.914
		700	5.8884	-12.825	-25.800	21.953	481.8	-0.411
		800	10.7150	-10.694	-20.777	46.026	795.6	-0.098
		900	15.8490	-9.204	-16.910	64.714	1103.9	0.037
	3000	600	3.0200	-15.522	-32.238	10.233	326.4	-1.121
		700	7.5858	-12.594	-25.463	32.509	710.1	-0.619
		800	13.8040	-10.435	-20.439	70.388	1174.1	-0.283
GCH, CH(AgAgClX, HOCl)		900	20.8930	-8.965	-16.569	97.836	1634.1	-0.140
	l) 500	600	2.43	-16.197	-33.17	4.22	109.6	-0.325
		700	8.12	-13.172	-26.45	17.29	229.0	0.287
		800	20.26	-11.082	-21.61	40.49	305.0	0.653
		900	41.35	-9.561	-17.99	69.30	318.0	0.886
	1000	600	3.74	-16.060	-32.98	6.11	139.7	-0.461
		700	12.53	-13.056	-26.20	24.54	304.9	0.093
		800	31.28	-10.952	-21.23	58.43	471.4	0.450
		900	64.2	-9.442	-17.47	99.03	581.6	0.661
	2000	600	6.78	-15.792	-32.59	11.23	216.8	-0.688
		700	22.08	-12.825	-25.81	42.51	476.3	-0.124
		800	54.18	-10.694	-20.81	103.49	769.8	0.254
		900 1	109.43	- 9.204	-16.97	170.05	1032.7	0.456
	3000	600	10.15	-15.522	-32.24	18.76	325.8	-0.858
		700	32.18	-12.594	-25.47	66.95	704.2	-0.305
		800	77.66	-10.435	-20.46	166.96	1146.0	0.098
		900 1	155.6	-8.965	-16.61	266.99	1556.1	0.296

* For details of buffer notation see Eugster and Skippen (1967). M: magnetite; H: hematite; N: nickel; B: bunsenite; F: fayalite; Q: quartz; G. graphite.

volved in (9), we have calculated $m_{HCl^{\circ}}$ values, assuming ideal mixing of ideal gases, and we found the difference between the two sets of values to be always less than and usually much less than 10 percent. Values for $m_{HCl^{\circ}}$ calculated from eq (9) can be found in table 1.

Calculated HCl fugacities at 2000 bars for three hydrogen buffers are plotted as a function of temperature in figure 1. Values vary between 0.1 and 100 bars. The variation of $m_{\rm HCl^{\circ}}$ as a function of $f_{\rm H_2}$ is expressed in figure 2, drawn for 500°C, 2000 bars.

EXPERIMENTAL APPARATUS AND PROCEDURES

The experimental set-up follows that developed by Eugster and Skippen (1967) for C–O–H gases, except that the internal buffer is a mixture of Ag + AgCl wrapped in silver foil, instead of graphite. The arrangement is shown in figure 3.

Fig. 1. Calculated HCl fugacities (in bars) for different oxygen buffers at 2000 bars pressure. MH: magnetite + hematite; NB: nickel + bunsenite; FMQ: fayalite + magnetite + quartz; GCH: graphite + methane.

Fig. 2. Calculated HCl molalities as a function of imposed hydrogen fugacities at 500°C and 2000 bars pressure. For buffer notations see figure 1.

274